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In baseband combining, the key element is the time alignment of the baseband

signals. This article describes a closed-loop time-alignment system that estimates

and adjusts the relative delay between two baseband signals received from two differ-

ent antennas for the signals to be coherently combined. This system automatically
determines which signal is advanced and delays it accordingly with a resolution of a

sample period. The performance of the loop is analyzed, and the analysis is verified

through simulation. The variance of the delay estimates and the signal-to-noise
ratio degradation in the simulations agree with the theoretical calculations.

I. Introduction

Antenna array combining techniques have been used

in the Deep Space Network to improve the signal-to-noise

ratio (SNR) [1]. These techniques include full spectrum,

baseband, and symbol stream combining. Each technique,

however, has been applied only to a specific mission, and a

rigorous comparison between the techniques is missing. To

have a better understanding of how these techniques per-

form under the same or different conditions, all techniques
are being studied and simulated in software.

This article concentrates on baseband combining where
signals from two antennas have each had their carrier re-

moved before going into the combiner. A diagram of base-

band (BB) combining is shown in Fig. 1. The signals re-

ceived from the ith antenna have the following form [1]:
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ri(t) = _ sin (wc,(t - ri) + 0_,) + 2_m,d(t -- 7-i)

x sgn [sin (_o,<(t - Ti) + 0,_)}

× cos - + + (1)

where Pc, = P, cos 2 A and PD, = Pi sin 2 A, with Pi being

the total signal power of the received signal from the ith

antenna, and A is the modulation index. The parameters

we, and 0c, denote the carrier angular frequency and phase

of the received signal from the ith antenna, W_c and 0_¢

denote the subcarrier angular frequency and phase, and

7-, is the relative delay between the reference signal and

the ith signal. These received signals are analog-to-digital
(A/D) converted and downconverted to an intermediate

frequency (IF) and then sampled before going through the
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carrier tracking in the model. After carrier removal, ig-

noring the filtering effects on the data and the squarewave

subcarrier, the signals have the form

= cos -

× sgn [sin (_c(kTs - vi) + 0_c)] + n_i(k)

= s (k) + (2)

where T, denotes the sampling period, and ¢c, is the car-

rier phase error in the ith carrier-tracking loop. The sig-

nals r_(k), i = 1,2,..., are the to-be-combined b_seband

signals with different time-varying time delays. To coher-
ently combine these signals, it is necessary to align them
in time first.

To align two signals in time, first find the relative de-
lay between the two signals. A standard procedure for

finding a relative delay between two signals is to correlate

them [2] since the cross-correlation is a (linear or nonlin-

ear) function of the relative delay. The advanced signal
will then be delayed by the amount computed from the
cross-correlation. As mentioned before, the relative delay

is not constant in time; therefore, to track tile dynamics of

the relative delay automatically, a closed loop is used. To

close the loop, a number of components need to be added,

e.g., a loop filter and an integrator.

This article presents a closed-loop time-alignment sys-

tem, which takes two baseband signals, estimates the rela-

tive delay between the two signals using a correlator, and

adjusts the time delay of the advanced signal through a

loop filter and an integrator before combining the two

baseband signals. The closed-loop time-alignment system,

shown in Fig. 2, consists of a quadrature correlator, a loop

filter, a unit delay, an integrator, a nearest integer device,

and a decision-making device.

Each component in the loop has its function, as briefly
described below and in detail in the subsections. The

cross-correlator determines the relative delay between two

signals. The loop filter tracks the dynamics of the rel-
ative delay and maintains the loop stability. The unit

delay (z -1) is required to close the loop. The integrator

(z/(z - 1) transfer characteristic) combines the previously

and currently computed relative delays. The nearest inte-
ger device is needed because the delay can be adjusted only

by an integer number of samples. Finally, the decision-

making device decides which signal needs to be delayed.

A similar time-alignment system called tile real-time

telemetry combiner (RTC) has been developed and ana-

lyzed [2,4,5]; however, this closed-loop time-alignment sys-

tem overcomes the following RTC limitations:

(1) Since the length of the correlator in the RTC is fixed,
the correlation feedback is not useful for low SNR

and the loop has to be open.

(2) Because cross-correlation uses the product

of the sign bits of the two signals, it causes the

quantization-noise power to increase from -58.8 to
-16.8 dB when compared with 8-bit quantization.

(3) Since the delay can be adjusted only' in one branch,

the to-be-adjusted branch must be delayed relative

to the other branch. However, the signals' ad-

vance/delay relationship may change in time as the

spacecraft moves and the Earth rotates.

(4) The RTC has an analog feedback to adjust delays,
which is not suitable for software or completely dig-

ital hardware development.

The closed-loop time-alignment systeln presented here,

on the other hand, has the following features:

(1) An adjustable correlation length to accommodate
different SNRs.

(2) Cross-correlation, which is a product of the

floating-point samples of the signals, reduces the

quantization-noise power by 42 dB with 8-bit quan-
tization.

(3) A decision-making device that automatically delays

the advanced signal.

(4) Discrete-delay adjustments suitable for software or
completely digital hardware development.

Although this time-alignment system can adjust delays

only to the precision of an integer number of samples, ac-

curacy is not a problem when the subcarrier is a perfect

square wave and the data transitions are instantaneous.

In practice, accuracy is not a problem if the signal is not

filtered or the sample rate is much higher than the subcar-

tier frequency. In the case of a filtered signal sampled at.
a low rate, an added interpolation on the input waveforms

can provide better resolution.

Due to all these differences, the RTC analysis does not

apply to the closed-loop time-alignment system proposed
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here;therefore,ananalysisof thenewsystemisneeded.
Becauseof thenonlineardevicethattakesthenearestin-
tegerin the loop,linearsystemtheory,or analysisin the
frequencydomainor Z-domain,doesnot apply.There-
mainingchoiceis to usetime-domainanalysisfor nonlin-
earsystemseventhoughit is not asstraightforwardas
frequency-domainanalysisfor linearsystems.

A systemanalysiswill begivenlater,followingamore
detaileddescriptionof eachof the componentsin the
closed-looptime-alignmentsystem.Simulationresultsand
comparisonswith thetheoreticalcalculationswill alsobe
presented.

II. System Description

A block diagram of the closed-loop time-alignment sys-

tem is shown in Fig. 2, and an equivalent diagram of the

closed loop is shown in Fig. 3. In this section, each of

the components and their functions are described in de-

tail. The components include a cross-correlator, loop fil-

ter, unit delay, integrator, a device that takes the nearest

integer, and a device that decides which signal to delay.

A. Cross-Correlator

To find tile proportionality between cross-correlator

output and relative delay, consider the noise-free case.

The cross-correlator, shown in Fig. 4, computes the rela-

tive delay by taking the difference between the correlation

of Signal 1, sl(k), with Signal 2 delayed by Na samples,

s=(k - Nd), and the correlation of Signal 2, s2(k), with

Signal 1 delayed by Nd samples, sa(k - Nd); the result is

divided by, two. The correlator output becomes

1 [sl(k)s,(k - Nd) -- sl(k - Nd)s2(k)] (3)e(,,_) = -_

where Sl(k) and s2(k) are defined in Eq. (2).

This cross-correlator is similar to that in RTC [2,4,5],

except the cross-correlation is floating point instead of sign

bit, and discrete instead of continuous. By using correla-

tions of 8-bit quantized samples, the quantization-noise

power reduces from -16.8 dB of the single-bit correlation
to -58.8 dB.

The analysis of this cross-correlator is similar to that in

[2] except the cross-correlator is discrete instead of contin-
uous. The proportionality of the cross-correlator output

and the relative delay is given in Appendix A. Assuming

that the signal power is normalized to 1, the correlator

output in the linear region ([m[ < gd) is

= -_R, ym]c(m) [4f, c f J rn

= am (4)

where f,c is the subcarrier frequency, R,v,,_ is the symbol
rate, and f, is the sampling rate. Dividing the correlator

output by a, one obtains the relative delay m.

Appendix A shows that when the artificial delay, Nd,

is one-quarter of the number of samples in a subcarrier

period, N_¢, the linear region is the longest, which means

that larger delays can be tracked. Hence, the correlator is

called a quadrature correlator.

In a noisy environment, this output is further averaged

over N correlator-output samples to reduce the noise ef-
fect.

B. Loop Filter

To close the loop, one needs to add a loop filter for

dynamic tracking and loop stability. A higher order loop

filter does better dynamic tracking. In this case, how-

ever, the relative delay is considered to have low dynamics;

hence, only a first-order loop filter is used. That is, the
filter transfer function is

F(z) = K

The choice of K influences the loop stability, loop SNR,

and loop bandwidth. These issues will be discussed further
in Section III.

C. Integrator, Unit Delay, and Decision Making

The integrator combines past and current delay compu-
tations; the unit delay is required to close the loop; and the

decision-making device is basically a two-way switch that

switches one way when input is positive and switches the

other way when input is negative. This decision-making

device allows the system to delay whichever signal is ad-
vanced.

III. System Analysis

To characterize the system quantitatively, a number

of parameters need to be determined. Among them are

the filter parameters for loop stability, the loop SNR, the

loop bandwidth, and the SNR degradation due to mis-

alignment. Except for loop stability, which depends on

the filter parameters only, other parameters such as loop
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SNR, loop bandwidth, and SNR degradation depend on
the loop-output noise variance. This noise variance is an-

alyzed following a brief analysis of loop stability.

A. Loop Stability

For stability analysis, the noise input in Fig. 3 is ig-

nored because loop stability depends solely on the loop

parameters and is input independent. Assume that the

relative true delay is an integer multiple of the sample
period. This assumption makes the nonlinear nearest in-

teger device negligible in a noise-free environment. Note

that when the delay is not an integer multiple of a sample
period, the nearest integer device can be modeled as an

additive quantization noise source of finite magnitude and

thus can be ignored for the stability analysis.

Consider a first-order loop filter, F(z) = K. The open-
loop transfer function is

G(z) = lCz -2 z
z--1

and the closed-loop transfer function is

H(z)- G(z)
1 + G(z)

K

z2--zq-K
(5)

A root-locus plot of this system with a first-order loop
filter is shown in Fig. 5. From this plot, it can be observed

that when K > l, the root locus is outside the unit circle;

thus, the loop is unstable. For 0.25 < K < 1, the system

is underdamped; for K = 0.25, it is critically damped;
and for 0 < K < 0.25, it is overdamped. Besides affect-

ing system stability, the choice of K also affects the noise

performance in the delay estimates, as will be discussed.

B. Noise Analysis

To analyze the noise, we first determine the amount of

noise (mean and variance) at the output of the quadrature

correlator in Fig. 4. This amount of noise is added at the

output of the eorrelator, which acts as a unit delay in

the closed loop, as shown in Fig. 6. The noise statistics

at the correlator output are given next, followed by the
noise statistics of the closed loop. Because of the nonlinear

device of taking the nearest integer, the Z-domain linear

system theory cannot be applied here, and time-domain

analysis is used instead.

1. Noise Variance at Correlator Output. To de-

termine the noise variance at the output of the correla-

tor shown in Fig. 4, assume that the samples of the two
inputs to the correlator consist of the sum of baseband

signals, sl(k) and s2(k) as defined in Eq. (2), and inde-

pendent samples of additive white Gaussian noise, n](k)

and n'2(k), both with zero mean and variance 0-2. Denote
the kth sample of the inputs of the quadrature correlator
as

rl(k ) = si(k) + n'i(k ) (6)

where i = 1,2.

The output of the correlator before "sum and dump" is

1 ,
q(_) = _[Pi(]_)r;( ]¢ -- Xd) -- r'l (]_ -- Nd)r;(k)] (7)

The sum-and-dump filter takes the average of its input

over N samples, and its ouput is then divided by the slope
a to produce an output sample

(m + 1)N1
Wm=75 q(k) (s)

k=mN + l

where a is defined in gq. {4).

The problem here is to find the variance of win. With

the assumption that {win} is a stationary sequence and
the noise samples at the inputs of the correlator are in-

dependent and identically distributed with zero mean, the
variance of wm is found to be

2 1
O'112 --

9 2 "_

(2a)2N [20";nt0"in_ + 40"?n1P2 + 40"2,_ Pt] (9)

which is independent of m, and where Pi,i = 1,2 is the

ith signal power, and ai_, is the ith noise variance at each
correlator input. See Appendix B.

2. Noise Variance at Loop Output. An equivalent

diagram of the closed loop is shown in Fig. 6, where noise
is the input and the output corresponds to the location

of the computed delay. Denote the kth noise samples at

the input of the loop as w_, those at the output of the

integrator as xk, and those after taking the nearest integer

as Yk. The goal here is to find the variance at the output

after the nearest integer device, that is, the variance of y.
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The difference equation that describes the closed loop

in Fig. 6 is

Xk -- Xk-1 = I;(Wk-1 -- Yk-2) (lO)

Assuming that w and x are stationary Gaussian random

processes with zero mean, then y also has zero mean, and
tile variances of w, x, and y, denoted by a2,, cr2, and cry,
are found to have the following relationship (Appendix C):

2f; _ - I,:_0._= IC-_,_.
I+K

The relationship between the variances of x and y is

° Ecr_ = pick 2
k

where

where cr_ is the linear loop-output noise variance in units

of squared radians.

2 has unitsHowever, the loop-output noise variance, cry,
of squared number of samples. Converting the units to

squared radians by equating a symbol duration to a cycle

or 2_r radians, one has

2

cr; = \ L /
(16)

(11) where fs is tile sampling rate, and R, ym is the data rate.

The loop SNR can be expressed as

( f2_s ) 21 (17)P--

g m 0"2
(12)

The one-sided noise equivalent bandwidth for a linear

system is defined as [4]

1
(13) BL = --I2 (18)2TL

One can solve Eqs. (11), (12), and (13), for ay for a given

input noise variance _r2. Note that in the absence of the

nearest integer device, _r_ = 0._, and Eq. (11) becomes

(14)
2--1;2--/( . ,

h"- + h" %

which is exactly the same as Eq. (D-3) in Appendix D, in

the linear system case.

Also note that for a large input noise variance (a 2 >

0.5, observed from simulations), the noise generated by

the nonlinear nearest integer device is approximated by

a quantization noise with a uniform distribution and a
variance of one-twelfth, or

1
o o __

crY'= crY;+ 12

C. Loop SNR and Loop Bandwidth

The loop SNR is usually defined as [1]

1

p = _---_ (15)

where

1 1 _ H(z)H(z_a)ldzI2 = ]H(z)l 2 27rj I= 1 2'

H(z) is the closed-loop transfer function, TL = NT; is
the correlation time, N is the number of samples in the

correlation, and T_ is the original sample period. The loop

input and output variances are related through I2, that is,
vat'out = ]2varin. Note that vari,_ and varo_t are not the

2 and 2 used previously.same as 0.in flout

In a nonlinear system, however, Z-domain analysis is no

longer valid; thus, there is not an expression for H(z), nor
for I2. Therefore, the loop bandwidth cannot be defined

the same way as for linear systems. However, an expression
for the relation between the input and output variances is

available in Eq. (11); hence, the one-sided noise equivalent
bandwidth is defined in this case as

1 v a rou t

BL = 27_ varin

Y (19)
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2 and 2 have been defined in Sections III.B.1 andwhere ay _w
III.B.2.

D. SNR Degradation Due to the Loop

The magnitude reduction of the signal at the output of

the sum-and-dump filter due to time misalignment in the

baseband-combining scheme is (see Appendix E)

cT, : 1+ T, (20)

where Ti is the relative delay over a symbol period be-
tween the ith antenna and the reference antenna. Note

that the expression in Eq. (20), derived in Appendix E,

differs from the stated expression in Eq. 39 in [1] for the

baseband-combining assembly containing the RTC. The
first and second moments of the reduction function of the

time-alignment loop are

-- 2 Lc
Cr,=l+ (_- RTym)_ _rT' (21)

and

= 1+2

(½-2 f'c 2 ¢22/

where i = 1,2. Note that Cr, = 1, and C21 = 1, which
implies cr_ = 0.

Assuming perfect carrier and subcarrier tracking and

symbol synchronization, the degradation due solely to the

closed-loop time-alignment system is

Dta = 10log10

reCr + S 7,:jC,,C,, l

i ="1 i,j,i_j

F2 (23)

where 7i = (Pi/No,)/(P1/No_), and F = _, 7i, with

Na being the number of antennas in the array, which is 2
in this case.

Having analyzed and defined all the necessary param-
eters, we now can check theoretical versus simulation re-
sults.

IV. Simulation Results

To verify the theoretical results, the Pt/No at the in-

put of the cross correlator is fixed at 45 dB-Hz. The loop
gain K is set at 0.25, and the sample rate at 500 kHz.

The subcarrier frequency is 5 kHz, and the symbol rate
is 1000 symbols/sec. There is no carrier in the simulation
since the carrier is tracked and removed before baseband

combining. The cross-correlation length N (or loop band-
width BL) is varied, and the loop SNR, p, is obtained from

the theory and the simulations. The results are shown

in Table 1 and the comparison of the results is shown in

Fig. 7.

The simulation results also show that when the noise

standard deviation at the input of the closed loop, cry, is

larger than the one-sided length of the linear region, Nd,

(¢rw > Nd) the loop fails to track. This can be observed in

Fig. 7 for p smaller than 17 dB.

The SNR degradation due to the closed-loop time-

alignment system is also measured through simulation and

the results are very close to those obtained from Eq. (23),
as shown in Table 2. The parameters in the simulations

are as follows: Assume two identical antennas, each with

[',/No = 23.54 dB-Hz. The modulation index is 70 deg.

The sampling rate is 100,000 Hz; the carrier frequency is

3 Hz; the subcarrier frequency is 1000 Hz; and the symbol

rate is 200 symbols/sec. The time-alignment loop gain,

K, is 0.0625. Simulations are done for two cases, with

a perfect time alignment and with the closed-loop time-

alignment system. The difference in SNR degradation is
due to the closed-loop time-alignment system.

V, Conclusions

The article gives a full description of the design of a

closed-loop time-alignment system and a detailed descrip-

tion of each of the elements in the system. It also provides
an analysis of loop stability, noise effect, loop bandwidth,

loop SNR in terms of the length of the correlation, and

SNR degradation due to the loop. The closed-loop time-
alignment system described here differs from the RTC in

that this system is fully digital and is suitable for software
and completely digital hardware implementation. The cor-

relation is performed with floating-point samples of the

to-be-combined signals rather than their sign bits. This

causes the quantization-noise power to drop from -16.8 to
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-58.8 dB in the correlation, assuming 8-bit quantization.

The delay can be adjusted in either branch rather than

a single branch only. The length of the cross-correlation
can be adjusted for different levels of SNR. Because delays

are adjusted digitally, an operation to take the nearest in-

teger is needed, which results in a nonlinear system. An
analysis of the nonlinear system is presented in tile article.

The noise analysis of this loop is significantly different from

that of the RTC, due to the floating-point cross-correlation
and the nonlinearity. The article also gives a well-matched

comparison of theoretical and simulated results. The lin-

ear region of the relationship between the cross-correlation

and the delay is determined. When the standard deviation

of tile delay estimates exceeds a quarter of the subcarrier

period, tile relationship between the cross-correlation and

tile delay is no longer linear, which corresponds to about

a 17-dB loop SNR.

Although the time-alignment system described in this

article aligns two signals, it can be easily expanded into

the alignment of Na signals, where Na > 2, by aligning

the signals pairwise in N layers, where N = [log 2 Na]. It

can be shown that the total number of alignments is Na-1,

which is the same as if we chose the signal with the longest

delay as the reference, and adjusted all the delays of the

Na - 1 signals one by one as in [1]. Two advantages of

aligning the signals pairwise using this scheme are

(1) No reference signal is needed as this reference may

need to be changed in time.

(2) The SNRs get stronger after each layer, thus en-

abling the computation time to be reduced.

The combining degradation still needs to be analyzed.

Some simulation results show that this time-alignment

system can be improved by low-pass filtering the to-be-

correlated signals before the quadrature correlator. How-
ever, further analysis is needed to completely characterize

the system and the associated improvement.
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Table 1. Performance of the time-alignment closed loop.

N BL, Hz a2w(theo) a_(theo) Ptheo, dB Psimu, dB P_.tmu - Pth¢o, dB

25 1821.6 1303.6 237.47 14.26 3.17 -11.08

40 1157.1 814.8 150.85 16.23 9.82 -6.41

50 926.6 651.8 120.79 17.20 17.13 -0.07

100 463.7 325.9 60.45 20.20 20.13 -0.07

200 232.2 163.0 30.28 23.20 23.32 0.11

400 116.5 81.5 15.19 26.20 26.40 0.20

800 58.7 40.7 7.64 29.18 29.13 -0.05

1600 29.6 20.4 3.87 32.14 32.32 O. 18

Table 2. SNR degradation due to the time-alignment closed loop.

N BL, Hz p, dB a_(theo) a_(simu) Dth¢o, dB D_,m,,, dB

10,000 0.172 19.21 75.97 83.11 -0.92 -1.11

50,000 0.035 26.18 15.26 15.48 -0.39 -0.38

500,000 0.0036 35.96 1.60 2.45 - O. 14 - O. 13

5,000,000 4.58 × 10 -4 44.96 0.20 0.00 0.00 0.00
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Appendix A

Correlator Output Versus Relative Delay

The following gives the proportionality between the

cross-correlator output and the relative delay between the

signals received from two antennas. Let N_c be the num-

ber of samples in a subearrier period, Nay the number of
samples in a symbol period, and Na the number of sam-

ples in the artificial delay. As stated before, a baseband

signal consists of data on a square-wave subcarrier. As-

suming that the data and the subcarrier are independent,
the autocorrelation of the product of the data times the

subcarrier equals the product of the autocorrelation of the

data and that of the subearrier. Considering the linear
region Iml < N_c/2, the data correlation function is

Cd_t_(m) = 1 Ira]
N,v (A-l)

and the subcarrier correlation function is

c,¢(m) = 1 Iml
Ns¢/4 (A-2)

(m + N_) 2

+ g_yN, c/4 (A-5)

Finally, taking the difference of these two correlations and

dividing the result by 2, one obtains an equation of the

cross-correlator output in the linear region:

c(m) - 4fs¢ - Ray,,
Is

m

= am (A-6)

where fs is the sampling frequency, fac is the subcarrier

frequency, and Rsy,n is the symbol rate.

It is clear that the longer the linear region, the larger
the relative delay that can be tracked. The linear re-

gion is longest when the regions I-Nail2 + Nd, Nd] and
[--Nd, Ns¢/2 - Nd] coincide. That is, when

The correlation of data times subcarrier is Nd = N,¢/4

m 2
I nl _ Iml + (A-3)

C(d_ta)(s¢)(rn) = 1-- N_/4 Nsy NsyNs_/4

Then correlation curves are delayed or advanced by Nd

samples, which is equivalent to the correlations of sl(k

- Na)s2(k) or sl(k)s2(k - Nd). That is, in the region of
[-Na¢/2 + Na, Nd], the correlation function is

m -- Nd m -- Nd

c(s_,_) = 1 + +
Ns¢/4 Nsy

(m - Nd) 2

+ N_yNa¢/4 (A-4)

and in the region of [--Nd, Nat�2 - Nd]

m + Nd rn + Nd

c(_o_) = 1 N,_/4 Ns_,

Hence, the cross-correlator is also called a quadrature cor-
relator.

Figure A-1 shows a special case where the number of

samples per symbol period is chosen to be Nsu = 10, tile
number of samples per subcarrier period is Nsc = 8, and

the number of samples in the delay is Nd = Na¢/4 = 2 to

demonstrate the correlation of random data, a square-wave

subcarrier, and their product. Note that Nau and Nac are

arbitrarily chosen with a condition that Nau > Ns¢.

The first part of Fig. A-2 shows the correlation of Sl (k -

Nd) and s2(k) = Sl(k-m), which is the correlation of Sl(k)

and s2(k) shifted to the right by Na samples. Similarly,

the correlation ofsl(k) and s_(k -N_) = sl(k --Nd--rn) is
the correlation of sl(k) and s2(k) shifted to the left by Nd

samples. The second part of Fig. A-2 takes the difference

between these two correlations and divides the result by 2,

so that a linear region can be observed from --Nd to Nd,
with Nd being 2 in this case. Figure A-3 confirms that the

maximum length of the linear region occurs when NdTs is

chosen to be one-quarter of the subcarrier period.
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Appendix B

Noise Variance at the Correlator Output

To find the noise variance at the correlator output, we

initially find the first and second moments of the corre-

lation. Assuming that the correlation {win} is stationary

(and noting that the index m can be dropped), then its
first moment is

N

E{w} 1= a--N E E{q(k)}
k=l

N
1

2aN E E{r_(k)r_(k - Na) - r_(k - Nd)r_(k)}
k=l

Denote the variances of the noises at the correlator inputs

as a_n ' and a?m_ and the signal powers as P1 and P_, re-
spectively. Expanding the product q(k)q(m), one obtains

N N
1

E{w2] - (2aN)2 E E [2c_",cr2_ 6m,_
k=l rn=l

+ 2g_,_P16m,k + 2c_, 1P26m,k

-- o'_n_E{Sl(k)Sl(k -- 2Nd)}6m,k-Nd

N

1 EE{sl(k)s2(k- Nd)
2aN

k=l

-- o'_n2E{sl(k + Nd)Sl(k - Na)}6m,k+N_

- sl(k - Na)s2(k)}

The square of the first moment is

N N

(E{w}) _ 1(2aN) - Na)
k=l rn=l

(B-I) -- O'_n , E{s2(k)sx(k - 9Nd)}6m,k-Na

- a_n_ E{s_(k + Nd)s2(k - Nd)}6m,k+N_

+ E{sl(k)sl(m)s2(k - Nd)s_(m -- Na)}

- sl(k -Nd)s2(k)}
- Z{sl(k)sl(m - Nd)s2(k - Nd)S2(m)}

× E{sl(m)s_(m-Nd)

-sl(m-Na)s2(m)}

+ E{sl(k)sl(m)s2(k - Nd)s2(m-- Na)}

- E{sl(k)sl(m - gd)s2(k - Nd)s2(m)}

-- E{sl(k - gd)sl(m)s2(k)s2(m- gd)}

+E{s1(k-gd)sl(m-Nd)s2(k)

x s2(m)} (B-2)

The second moment of w is defined as

--E{Sl(k - Nd)Sl(m)s2(k)s2(m --Nd)}

+ ]_{Sl(k - Nd)Sl(,n-- Na)

x s2(k)s2(m)}] (B-4)

For a quadrature correlator, the delay Nd is one-quarter

of the subcarrier period; thus, two points of the same sig-

nal that are 2Na samples apart are one-half of a period

apart, which means that they always have the same mag-
nitude and the opposite sign. Therefore, their product

is -Pi, i = 1,2. Also note that the last four terms in

Eq. (B-4) are the mean squared of w, which is subtracted

from E{w 2} to obtain the variance of w; hence, the vari-
ance of w is

N N

E{w2} - (2aN)21k__,1m_1E{q(k)q(m)}==
(B-3)

a_ (za) _v
(B-5)
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Appendix C

Noise Variance at the Loop Output

The difference equation that describes the closed loop

in Fig. 6 is

zk - xk-1 = K(wk__ - YE-2) (C-l)

Assuming that w and x are stationary zero-mean Gaus-

sian processes, taking the expected value of Eq. (C-l), one
obtains

E{y} = 0

Then the second moments of the processes w, x, and y are

their variances denoted by a_,2 a_,2 and cry,2 respectively.
Now taking the expected value on both sides of Eq. (C-l)

squared,

E{xg} - 2E{xkXk_l} J- m{xg_l} ----

I(2(E{wL1} + E{yL2}) (c-2)

That is

2_ = _2_ + i;_ + 2E{xkx__1} (o3)

The last term in Eq. (C-3) can be expressed in terms of

the variance of x when multiplying Eq. (C-l) by xk-1 and

taking the expected value. That is,

E{xkxk-1} : E{X__l}÷l£E{Wk-lXk_1}

_{WnXn} = E{wnxn_1} J- I£E{WnWn_l}

- KE{wny,__2} = 0 (c-5)

The last step in the above equation follows since the past

outputs are independent of the future inputs when the sys-

tem is causal and the noises at different times are indepen-
dent, Going back to Eq. (C-4), since Yk-_ is the nearest

integer of Xk_2, it can be expressed through an ok-2 as

Yk-2 = xk-2 + _k-2

where _k-_ represents a quantization error. Substituting

the above into Eq. (C-4), one has

2 __KE{xk-lXk-2}e,{xkxk-1} = _

- 1,E{xk__k__} (c-6)

The last term in Eq. (C-6) is zero since the past output

ek-2 is independent of the future input xk-1. Applying

the stationary property of x and rearranging Eq. (C-6),
one obtains

1
E{xkxk-1} (c-7)

1 + "'1',_r_"

- KE{xk__yk_2} (c-4)

To see that E{wk_ixk__} = 0, one can multiply Eq. (C-l)
by wk :

Substituting Eq. (C-7) into Eq. (C-3), one has

21,- __ i._ _ = 1.2_5
I+K

(c-8)

107



Appendix D

Noise Variance at Loop Output for Linear Cases

Without taking the nearest integer, the linear system

theory should be applied. The variance at the output of

the loop y equals the variance of the delay estimates due

to the noise n, and it is

1
2 c_2 I_

_ry- IH(1)I 2

where

1 J_b H(z)H(z-l)ldz12 = _j I=1 z

/k'Z

H(z)- z2_ z_ K

Using the formula given in [3], 12 is

K2+K
12-

2-K-K2

The variance of y is

Using the first-order loop filter, the closed-loop transfer
function is

2 _ K _ + K a_
c_u 2 - K - K:

(D-l)

(D-2)

(D-3)
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Appendix E

Signal Amplitude Reduction Due to Misalignment

Let N,c, N, v, and Nrd be the number of samples per
subcarrier period, symbol duration, and in the relative de-

lay. First, consider the ideal case where the signals are

perfectly aligned, and the combined signal amplitude at

the output of the sum-and-dump filter is

Amis

Ci ='--
Aideal

1 Nrd
= 1 -- 2 N____yyN__.__dd+ _ __

N_ N_y 2 N_y

Aideal -_ 2Nsy

Then consider adding two misaligned signals. The signal

amplitude at the output of the sum-and-dump filter be-
comes

Am. = 2 2 2

(2 N_u 1) 2(-_L--N,d)+\ N,c -
(E-l)

The amplitude reduction of the misaligned signal at the

output of the sum-and-dump filter is

= 1 + R_um/ ri

where f_ is the subcarrier frequency, R_v,,_ is the symbol

rate, and

Nrd
ri-

Ns9

is the relative delay between the ith signal and the refer-

ence signal in terms of a symbol period.
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The real-time array feed compensation system is currently being evaluated at

DSS 13. This system recovers signal-to-noise ratio (SNR) loss due to mechanical

antenna deformations by using an array of seven Ka-band (33.7-GHz) horns to

collect the defocused signal fields. The received signals are downconverted and

digitized, in-phase and quadrature samples are generated, and combining weights

are applied before the samples are recombined. It is shown that when optimum

combining weights are employed, the SNR of the combined signal approaches the

sum of the channel SNRs. The optimum combining weights are estimated directly

from the signals in each channel by the Real-Time Block II (RTB2) correlator; since

it was designed for very-long-baseline interferometer (VLBI) applications, it can

process broadband signals as well as tones to extract the required weight estimates.

The estimation algorithms for the optimum combining weights are described for

tones and broadband sources. Data recorded in correlator output files can also

be used off-line to estimate combiner performance by estimating the SNR in each

channel, which was done for data taken during a Jupiter track at DSS 13.

I. Introduction

The advantages of array feed combining for recovering

signal-to-noise ratio (SNR) lost to mechanical deforma-

tions of large receiving antennas have been described in

previous articles [1,2]. Typically, SNR losses become sig-

nificant when carrier wavelengths smaller than the design

tolerance of the reflector are employed. This is the case in

the DSN, where Ka-band (33.7-GHz) reception is contem-
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plated with the large 34- and 70-m antennas, whose sur-

faces are subject to considerable deformation from gravity
and wind.

The array feed compensation system currently being

evaluated at DSS 13 has been designed to recover SNR

losses at both low and high elevations, where losses are

most severe. The idea is to collect some of the deflected


